Skip navigation

Что такое Полета теория и практика: решение проблем прочности? Значение poleta teoriya i praktika reshenie problem prochnosti, энциклопедия кольера

Значение термина «Полета теория и практика: решение проблем прочности» в Энциклопедии Кольера. Что такое полета теория и практика: решение проблем прочности? Узнайте, что означает слово poleta-teoriya-i-praktika-reshenie-problem-prochnosti - толкование, обозначение, определение термина, его лексический смысл и описание.

Полета теория и практика: решение проблем прочности

Полета теория и практика: решение проблем прочности – К статье ПОЛЕТА ТЕОРИЯ И ПРАКТИКА

Проблемы прочности самолета связаны с необходимостью минимизации массы конструкции, хотя она и подвергается воздействию больших нагрузок. Для характеристики этих нагрузок используют параметр, называемый "коэффициентом перегрузки", нормирующим параметром которого является максимальная взлетная масса самолета (расчетный полный вес). Величина этого коэффициента зависит от типа самолета; она составляет около 3 для пассажирских самолетов и бомбардировщиков и увеличивается до 8 для истребителей и учебно-тренировочных самолетов. У самолетов хорошей компоновки вес несущей (силовой) конструкции может составлять около одной четверти от расчетного полного веса.

Флаттер. Несущая конструкция должна быть не только прочной, но и достаточно жесткой. В случае податливой конструкции увеличение нагрузки, обусловленной подъемной силой, может вызвать такую деформацию крыла, которая эквивалентна увеличению угла атаки с соответствующим увеличением подъемной силы и т.д., вплоть до разрушения конструкции. Недостаточная жесткость конструкции может стать причиной возникновения специфических крутильных колебаний - флаттера (рис. 9). При флаттере крылья самолета совершают машущие движения, подобные взмахам крыльев летящей птицы. Существует определенная взаимозависимость между крутильными и изгибными деформациями крыла, вызванными аэродинамическими нагрузками, и энергия воздушного потока при флаттере может вызвать нарастание крутильно-изгибных колебаний, которые в конце концов приводят к разрушению конструкции. Флаттер может также возникать в виде машущих движений несущих поверхностей рулей, изгибных колебаний фюзеляжа и знакопеременных деформаций других элементов конструкции летательного аппарата.

Бипланы. Первым самолетом, поднявшимся в воздух, был биплан, или "этажерка", как его еще называли за внешний вид. Биплан - не только прочная, но и достаточно жесткая конструкция. Его крылья подкреплялись с помощью элементов, работающих на сжатие, таких, как деревянные стойки, подкосы и лонжероны, и элементов, работающих на растяжение, - расчалок из стальных струн и тросов. Деревянные нервюры закрывались материей, пропитанной лаком. Главным дефектом биплана является высокое лобовое сопротивление, которое создают многочисленные распорки и расчалки и крылья большой площади.

Первые монопланы. Уже первые расчалочные монопланы были более совершенны с аэродинамической точки зрения, чем бипланы. Однако вследствие менее жесткой конструкции они нередко терпели аварии, вызванные неустойчивостью крутильно-изгибных колебаний и флаттером. В ходе Первой мировой войны по этим причинам от применения монопланов отказались.

Современные монопланы. В результате развития науки о прочности были разработаны конструкции (рис. 10), позволившие создать жесткий моноплан с высокими аэродинамическими характеристиками. В этой конструкции жесткость крыла на кручение обеспечивается кессонной конструкцией, состоящей из продольных лонжеронов со стенками, работающими на срез, и обшивки крыла между лонжеронами. Частоты собственных крутильных колебаний таких конструкций велики по сравнению с частотами изгибных колебаний, так что критическая для возникновения флаттера скорость значительно превышает скорости, развиваемые такими летательными аппаратами.

Обшивка и стенки лонжеронов на первых монопланах новой конструкции изготавливались из авиационной фанеры, а сами лонжероны - из деревянного бруса путем склейки. Эта же технология применялась для создания монококовых фюзеляжей. Клееные конструкции оказались довольно ненадежными, так как они исключали возможность технического контроля качества склейки. Кроме того, деревянные конструкции подвержены гниению и порче насекомыми. По этим причинам несущие элементы обшивки самолетов стали изготавливать из алюминиевых листов.

Эти листы должны быть очень тонкими из соображений экономии веса, однако тонкие неподкрепленные панели обшивки коробятся под действием нагрузки, искажая требуемую аэродинамикой форму поверхности и приводя к разрушению конструкции в случае нарастания неустойчивости. Чтобы воспрепятствовать короблению, панель обшивки можно усилить различными средствами. Можно подкрепить обшивку в отдельных местах внутренними элементами жесткости или использовать многослойную обшивку (рис. 11).

Сверхзвуковой самолет. При высоких скоростях полета, развиваемых сверхзвуковыми самолетами, температура обшивки повышается вследствие аэродинамического нагревания, и соответственно снижается ее прочность. Вследствие этого алюминиевые сплавы непригодны для изготовления сверхзвуковых самолетов с M . 2, и вместо них используют сплавы на основе никеля или титана. Еще одной серьезной проблемой прочности конструкции сверхзвукового самолета является необходимость использования тонких и удлиненных в направлении полета форм, которые, как упоминалось выше, требуются для уменьшения волнового сопротивления.

Энциклопедия Кольера
Прослушать

Поделиться с друзьями:

Постоянная ссылка на страницу:

Ссылка для сайта/блога:

Ссылка для форума (BB-код):