Skip navigation

Что такое Биология: биологические концепции? Значение biologiya biologicheskie koncepcii, энциклопедия кольера

Значение термина «Биология: биологические концепции» в Энциклопедии Кольера. Что такое биология: биологические концепции? Узнайте, что означает слово biologiya-biologicheskie-koncepcii - толкование, обозначение, определение термина, его лексический смысл и описание.

Биология: биологические концепции

Биология: биологические концепции – К статье БИОЛОГИЯ

Вплоть до начала 20 в. биологи были убеждены в том, что все живое принципиально отличается от неживого и в этом отличии есть какая-то тайна. В настоящее время благодаря значительно возросшему объему знаний в области химии и физики живой материи стало ясно, что жизнь может быть объяснена в обычных понятиях химии и физики. Ниже кратко излагаются основные концепции современной биологии, касающиеся самого феномена жизни.

Биогенез. Все живые организмы происходят только от других живых организмов, и из этого правила нет исключений. Не совсем ясно, можно ли считать живыми субмикроскопические фильтрующиеся вирусы, но нет сомнений в том, что появление их в большом количестве в среде возможно только за счет размножения тех вирусов, которые уже попали туда раньше. Из невирусного вещества вирусы не возникают.

Клеточная теория. Одно из наиболее фундаментальных обобщений современной биологии - это клеточная теория, согласно которой все живые существа, включая растения и животных, состоят из клеток и продуктов выделения клеток, а новые клетки образуются путем деления существующих. Все клетки демонстрируют также сходство в основных компонентах химического состава и в основных метаболических реакциях, а активность всего организма представляет собой сумму индивидуальных активностей составляющих этот организм клеток и результатов их взаимодействия.

Генетические механизмы и эволюция. Генетическая теория гласит, что признаки особей каждого поколения передаются следующему поколению через единицы наследственности, называемые генами. Крупные сложные молекулы ДНК состоят из четырех типов субъединиц, называемых нуклеотидами, и имеют структуру двойной спирали. Информация, содержащаяся в каждом гене, закодирована особым порядком расположения этих субъединиц. Поскольку каждый ген состоит примерно из 10 000 нуклеотидов, выстроенных в определенной последовательности, существует великое множество комбинаций нуклеотидов, а соответственно и множество различных последовательностей, являющихся единицами генетической информации.

Определение последовательности нуклеотидов, образующих определенный ген, стало теперь не только возможным, но даже довольно обычным делом. Более того, ген можно синтезировать, а затем клонировать, получив таким образом миллионы копий. Если какое-то заболевание человека вызвано мутацией гена, который в результате не функционирует надлежащим образом, в клетку может быть введен нормальный синтезированный ген, и он будет выполнять необходимую функцию. Эта процедура называется генной терапией. Грандиозный проект "Геном человека" призван выяснить нуклеотидные последовательности, образующие все гены человеческого генома.

Одно из важнейших обобщений современной биологии, формулируемое иногда как правило "один ген - один фермент - одна метаболическая реакция", было выдвинуто в 1941 американскими генетиками Дж.Бидлом и Э.Тейтемом. Согласно этой гипотезе, любая биохимическая реакция - как в развивающемся, так и в зрелом организме - контролируется определенным ферментом, а фермент этот в свою очередь контролируется одним геном. Информация, заложенная в каждом гене, передается от одного поколения другому специальным генетическим кодом, который определяется линейной последовательностью нуклеотидов. При образовании новых клеток каждый ген реплицируется, и в процессе деления каждая из дочерних клеток получает точную копию всего кода. В каждом поколении клеток происходит транскрипция генетического кода, что позволяет использовать наследственную информацию для регуляции синтеза специфических ферментов и других белков, существующих в клетках.

В 1953 американский биолог Дж.Уотсон и британский биохимик Ф.Крик сформулировали теорию, объясняющую, каким образом структура молекулы ДНК обеспечивает основные свойства генов - способность к репликации, к передаче информации и мутированию. На основании этой теории оказалось возможным сделать определенные предсказания о генетической регуляции синтеза белка и подтвердить их экспериментально.

Развитие с середины 1970-х годов генной инженерии, т.е. технологии получения рекомбинантных ДНК, значительно изменило характер исследований, проводимых в области генетики, биологии развития и эволюции. Разработка методов клонирования ДНК и проведения полимеразной цепной реакции позволяют получать в достаточном количестве необходимый генетический материал, включая рекомбинантные (гибридные) ДНК. Эти методы используются для выяснения тонкой структуры генетического аппарата и отношений между генами и их специфическими продуктами - полипептидами. Вводя в клетки рекомбинантную ДНК, удалось получить штаммы бактерий, способные синтезировать важные для медицины белки, например человеческий инсулин, гормон роста человека и многие другие соединения.

Значительный прогресс был достигнут в области изучения генетики человека. В частности, проведены исследования таких наследственных болезней, как серповидноклеточная анемия и муковисцидоз. Изучение раковых клеток привело к Открытие? Узнать в Бизнес словаре. Открытие - это...'>открытию онкогенов, превращающих нормальные клетки в злокачественные. Исследования, проводимые на вирусах, бактериях, дрожжах, плодовых мушках и мышах, позволили получить обширную информацию, касающуюся молекулярных механизмов наследственности. Теперь гены одних организмов могут быть перенесены в клетки других высокоразвитых организмов, например мышей, которые после такой процедуры называются трансгенными. Чтобы осуществить операцию по внедрению чужеродных генов в генетический аппарат млекопитающих, разработан целый ряд специальных методов.

Одно из наиболее удивительных открытий в генетике - это обнаружение двух типов входящих в состав генов полинуклеотидов: интронов и экзонов. Генетическая информация кодируется и передается только экзонами, функции же интронов до конца не выяснены.

Витамины и коферменты. Открытие этих веществ, которые не являются солями, белками, жирами или углеводами, но вместе с тем необходимы для полноценного питания, принадлежит американскому биохимику польского происхождения К.Функу. С 1912, когда Функ обнаружил витамины, началось интенсивное исследование их роли в метаболизме и выяснение того, почему в пищевом рационе одних организмов должны обязательно присутствовать определенные витамины, а в рационе других их может и не быть. Сейчас твердо установлено, что соединения, которые мы относим к витаминам, необходимы для нормального метаболизма всех живых существ, включая бактерии, зеленые растения и животных, однако, если некоторые организмы способны синтезировать эти соединения сами, другие должны получать их с пищей в готовом виде. Для многих витаминов в настоящее время уже выяснена их специфическая роль в метаболизме. Во всех случаях они функционируют как часть большой молекулы вещества, названного коферментом. Кофермент служит своего рода партнером фермента и субстратом для осуществления некоторых реакций. Авитаминоз, возникающий при недостаточности того или иного витамина, есть следствие нарушений в метаболизме, вызванных нехваткой кофермента.

Гормоны. Термин "гормон" был предложен в 1905 английским физиологом Э.Старлингом, который определил его как "любое вещество, в норме выделяемое клетками в какой-то одной части тела и переносимое кровью в другие части тела, где оно проявляет свое действие во благо всего организма". Можно сказать, что эндокринология (изучение гормонов) началась с 1849, когда немецкий физиолог А.Бертольд осуществил пересадку семенников от одной птицы к другой и предположил, что эти мужские половые железы выделяют в кровь какое-то вещество, определяющее развитие вторичных половых признаков. Само же это вещество - тестостерон - было выделено в чистом виде и описано только в 1935.

Животные (как позвоночные, так и беспозвоночные) и растения вырабатывают большое число разных гормонов. Все гормоны образуются в каком-то небольшом участке организма, а потом переносятся в другие его части, где, присутствуя в очень низких концентрациях, оказывают исключительно важное регуляторное и координирующее действие на активность клеток. Таким образом, основная роль гормонов - это химическая координация, дополняющая координацию, осуществляемую нервной системой.

Экология. Согласно одной из важнейших обобщающих концепций современной биологии, все живые организмы, обитающие в определенном месте, тесно взаимодействуют друг с другом и с окружающей средой. Определенные виды растений и животных распределены в пространстве не случайным образом, а образуют взаимозависимые сообщества, состоящие из продуцентов, консументов и редуцентов и связанные с определенными неживыми компонентами среды. Подобные сообщества могут быть выявлены и охарактеризованы по доминирующим видам; чаще всего это виды растений, дающие пищу и укрытие другим организмам. Экология призвана ответить на вопросы - почему те или иные виды растений и животных образуют определенное сообщество, как они взаимодействуют между собой и как влияет на них человеческая деятельность.

Особенности живых организмов. Живые организмы не содержат какого-либо особого химического элемента, которого не было бы в неживой природе. Наоборот, основные составляющие их элементы - углерод, водород, кислород и азот - довольно широко распространены на Земле. В очень небольших количествах в составе живых организмов присутствует, кроме того, множество других химических элементов. Все живые существа в большей или меньшей степени могут быть охарактеризованы по таким признакам, как размеры, форма тела, раздражимость, подвижность, а также особенности метаболизма, роста, размножения и адаптаций. Способность растений и животных приспосабливаться к своей среде позволяет им выживать при тех изменениях, которые происходят во внешнем мире. Адаптация может включать как очень быстрые изменения состояния организма, определяемые клеточной раздражимостью, так и очень длительные процессы, а именно появление мутаций и их естественный отбор.

Биологические ритмы. Многие проявления жизнедеятельности организмов имеют циклический характер. Существуют, например, сезонные циклы в динамике численности некоторых видов; известны также циклические явления в жизни популяций, повторяющиеся каждый год, каждый лунный месяц, каждый день или каждый морской прилив (или отлив). Многие биологические функции отдельно взятого организма тоже имеют периодическую природу, например, чередование сна и бодрствования. По крайней мере некоторые из этих циклов, по-видимому, регулируются внутренними биологическими часами.

Происхождение жизни. Современные теории возникновения мутаций, естественного отбора и популяционной динамики дают объяснение того, как произошли современные животные и растения от ранее существовавших форм. Вопрос о первоначальном происхождении жизни на Земле рассматривался многими биологами. Некоторые из них считали, что формы жизни были принесены из космоса, с других планет. Сторонники подобной точки зрения ссылаются на обнаруженные в 1961 и 1966 структуры в метеоритах, напоминающие окаменелости микроскопических организмов.

Теорию происхождения первых живых существ из неживой материи развивали немецкий физиолог Э.Пфлюгер, английский генетик Дж.Холдейн и русский биохимик А.И.Опарин.

Известен целый ряд реакций, посредством которых можно получить органические вещества из неорганических. Американский химик М.Калвин экспериментально показал, что излучение с высокой энергией, например космические лучи или электрические разряды, могут способствовать образованию органических соединений из простых неорганических компонентов. В 1953 американские химики Г.Юри и С.Миллер обнаружили, что некоторые аминокислоты, например глицин и аланин, и даже более сложные вещества могут быть получены из смеси паров воды, метана, аммиака и водорода, через которую всего лишь в течение недели пропускают электрические разряды.

Спонтанное зарождение живых организмов в той обстановке, которая существует на Земле в настоящее время, в высшей степени маловероятно, однако оно вполне могло произойти в прошлом. Все дело в различии условий, существовавших тогда и сейчас.

До того, как на Земле возникла жизнь, органические соединения могли накапливаться, поскольку, во-первых, не существовало плесневых грибов, бактерий и других живых существ, способных их потреблять, а во-вторых, они не подвергались спонтанному окислению, так как в атмосфере тогда отсутствовал кислород (или его было очень мало). Сейчас разработаны вполне правдоподобные теории, позволяющие объяснить, как органические вещества могли возникать в результате простых химических реакций, индуцированных электрическими разрядами, ультрафиолетовым излучением и другими физическими факторами, как эти молекулы могли затем образовать в море разбавленный бульон и как в результате их длительного взаимодействия формировались жидкие кристаллы, а затем и более сложные молекулы, по размерам приближающиеся к белкам и нуклеиновым кислотам. Процесс, аналогичный естественному отбору, мог действовать уже среди этих еще не живых, но уже очень сложных молекул. Дальнейшее объединение молекул белков и нуклеиновых кислот могло привести к появлению организмов, напоминающих ныне существующие вирусы, от которых, возможно, произошли бактерии, давшие в конце концов начало растениям и животным. Другим крупным шагом в ранней эволюции было развитие белково-липидной мембраны, которая окружала скопление молекул и позволяла одни молекулы накапливать, а другие, наоборот, выбрасывать наружу.

Все эти доводы привели ученых к заключению, что возникновение жизни на нашей планете - это событие не только вполне естественное и возможное, но и почти неизбежное. Более того, количество уже известных галактик, а соответственно и планет во Вселенной столь велико, что существование на многих из них условий, пригодных для жизни, представляется весьма вероятным. Не исключено, что жизнь на этих планетах действительно существует. Но если жизнь где-то возможна, то по прошествии достаточного времени она должна появиться и дать широкое разнообразие форм. Некоторые из этих форм могут сильно отличаться от тех, что встречаются на Земле, но другие могут быть очень похожими. Теория происхождения жизни может быть сведена к следующим тезисам: 1) органические вещества образуются из неорганических в результате воздействия физических факторов окружающей среды; 2) органические вещества взаимодействуют друг с другом, образуя все более сложные комплексы, из которых постепенно формируются ферменты и самовоспроизводящиеся системы, напоминающие гены; 3) сложные молекулы становятся более разнообразными и объединяются в примитивные, похожие на вирусы организмы; 4) вирусоподобные организмы постепенно эволюционируют и дают начало растениям и животным.

Энциклопедия Кольера
Прослушать

Поделиться с друзьями:

Постоянная ссылка на страницу:

Ссылка для сайта/блога:

Ссылка для форума (BB-код):