Skip navigation

Что такое Измерение? Значение слова izmerenie, философский словарь

Значение слова «Измерение» в Философском словаре. Что такое измерение? Узнайте, что означает слово izmerenie - толкование слова, обозначение слова, определение термина, его лексический смысл и описание.

Измерение

1. Измерение - процесс определения отношения одной величины (измеряемой) к другой , принятой за постоянную единицу измерения.

2. Измерение – — представление свойств реальных объектов в виде числовой величины, один из важнейших методов эмпирического познания. В самом общем случае величиной называют все то, что может быть больше или меньше, что может быть присуще объекту в большей или меньшей степени; числовая величина — такая, которая может быть выражена числом . Т.о., И. есть установление соотношения между числами и свойствами объектов. Если С обозначает некоторую степень измеряемого свойства, U— единицу И., а q — числовое значение соответствующей величины, то результат И. выражается следующим образом: Q = qU. Это уравнение называется «основным уравнением измерения», в соответствии с которым и осуществляется приписывание числовых значений измеряемым величинам (напр., температура данного тела равна 20 градусам). Для того чтобы результат И. был общезначим, в процессе И. необходимо соблюдать определенные правила И. 1. Правило эквивалентности: если физические значения измеряемых величин равны, то должны быть равны и их числовые выражения, символически: если Q1=Q2, то q1U = q2U. 2. Если физическое значение одной величины больше (меньше) физического значения другой величины, то числовое значение первой должно быть больше (меньше) числового выражения второй, символически: если Q1> Q2, то q1U > q2U. Знаки, стоящие между Q1и Q2, не являются выражением обычных арифметических отношений, а представляют некоторые эмпирические соотношения между свойствами разных тел. Напр., если речь идет о весе двух тел, то знак "=" между Q1 и Q2 будет означать лишь то, что когда мы кладем одно тело на одну чашу весов, а др. тело — на вторую чашу, то весы оказываются в равновесии. Знак « > » между Q1 и Q2 означает, что одна чаша весов опустилась ниже другой. 3. Правило аддитивности: числовое значение суммы физических значений некоторой величины должно быть равно сумме числовых значений этой величины, символически: qU (Q1 + Q2} = q1U + q2U. В формулировке данного правила между Q1 и Q2 помещают знак « + », обозначающий эмпирическую операцию Соединение в Словаре Ожегова'>соединения двух значений одной величины. Эту операцию следует отличать от арифметического сложения. Величины, соединение которых подчиняется указанному правилу, называются «аддитивными». Таковы, напр., масса , длина, объем в классической физике. Если соединить вместе два тела, то масса получившейся совокупности будет равна сумме масс этих тел. Величины, не подчиняющиеся указанному правилу, называются «неаддитивными». Примером неаддитивной величины может служить температура. Если соединить вместе два тела с температурой, скажем, 20°С и 50°С, то температура этой пары тел не будет равна 70°С. Существование неаддитивных величин показывает, что при обращении с количественными понятиями необходимо учитывать, какие конкретные свойства обозначаются такими понятиями, ибо эмпирическая природа этих свойств накладывает ограничения на операции, производимые с соответствующими количественными величинами. 4. Правило единицы И. Необходимо выбрать некоторое тело или легко воспроизводимый естественный процесс и охарактеризовать единицу И. посредством этого тела или процесса. Для температуры задают шкалу И., выбирая две крайние точки, напр., точку замерзания воды и точку ее кипения, и разделяют отрезок трубки между этими точками на определенное количество частей. Каждая такая часть является единицей И. температуры — градусом. Единицей И. длины является метр, времени — секунда. Хотя единицы И. выбираются произвольно, однако на их выбор накладываются определенные ограничения. Тело или процесс, избранные в качестве единицы И., должны сохранять неизменными свои размеры, форму, периодичность . Строгое соблюдение этих требований было бы возможно только для идеального эталона . Реальные же тела и процессы подвержены изменениям под влиянием окружающих условий. Поэтому в качестве реальных эталонов И. выбирают как можно более устойчивые к внешним воздействиям тела и процессы. В 1960 на Генеральной конференции по мерам и весам была принята Международная система единиц физических величин (СИ). Эта система действует и в России (с 1982). Карнап Р. Философские основания физики. М., 1971; Никифоров А.Л. Философия науки : история и методология . М., 1998. А.Л. Никифоров

3. Измерение - процедура присвоения символов наблюдаемым объектам в соответствии с некоторым правилом . Символы могут быть просто метками, представляющими классы или категории объектов в популяции, или числами, характеризующими степень выраженности у объекта измеряемого свойства. Символы-метки могут также представлять собой числа, но при этом не обязательно нести в себе характерную "числовую" информацию. Целью И. является получение формальной модели, исследование которой могло бы, в определенном смысле , заменить исследование самого объекта. Как всякое построение, И. приводят к потере части информации об объекте и/или ее искажению, иногда значительному. Потеря и искажение информации приводит к возникновению ошибок И., величина которых зависит от точности измерительного инструмента, условий, при которых производится И., квалификации наблюдателя. Различают случайные и систематические ошибки И. При исследовании отдельно взятого объекта ошибки обоих типов представляют одинаковую опасность. При статистическом обобщении информации о некоторой совокупности измеренных объектов случайные ошибки, в известной степени, взаимно "погашаются", в то время как систематические ошибки могут привести к значительному смещению результатов. Алгоритм присвоения символа объекту называется измерительной шкалой. Как всякая модель , измерительные шкалы должны правильно отражать изучаемые характеристики объекта и, следовательно, иметь те же свойства, что и измеряемые показатели. Различают четыре основных типа измерительных шкал, получившие следующие названия: шкала наименований, шкала порядка, интервальная шкала и шкала отношений. Шкала наименований или номинальная шкала используется только для обозначения принадлежности объекта к одному из нескольких непересекающихся классов. Приписываемые объектам символы, которые могут быть цифрами, буквами, словами или некоторыми специальными символами, представляют собой только метки соответствующих классов. Характерной особенностью номинальной шкалы является принципиальная невозможность упорядочить классы по измеряемому признаку - к ним нельзя прилагать суждения типа "больше - меньше", "лучше - хуже", и т.п. Примерами номинальных шкал являются: пол и национальность, специальность по образованию, марка сигарет, предпочитаемый цвет . Единственным отношением , определенным на шкале наименований, является отношение тождества: объекты, принадлежащие к одному классу, считаются тождественными, к разным классам - различными. Частным случаем шкалы наименований является дихотомическая шкала, с помощью которой фиксируют наличие у объекта определенного качества или его соответствие некоторому требованию. Шкалы порядка позволяют не только разбивать объекты на классы, но и упорядочивать классы по возрастанию (убыванию) изучаемого признака: об объектах, отнесенных к одному из классов, известно но только то, что они тождественны друг другу, но также, что они обладают измеряемым свойством в большей или меньшей степени, чем объекты из других классов. Но при этом порядковые шкалы не могут ответить на вопрос , на сколько (во сколько раз) это свойство выражено сильнее у объектов из одного класса, чем у объектов из другого класса. Примерами шкал порядка могут служить уровень образования, военные и академические звания, тип поселения (большой - средний - малый город - село), некоторые естественно-научные шкалы (твердость минералов, сила шторма). Так, можно сказать, что 6-балльный шторм заведомо сильнее, чем 4-балльный, но нельзя определить на сколько он сильнее; выпускник университета имеет более высокий образовательный уровень, чем выпускник средней школы, но разница в уровне образования не поддается непосредственному И. Упорядоченные классы достаточно часто нумеруют в порядке возрастания (убывания) измеряемого признака. Однако в силу того, что различия в значении признака точному И. не поддаются, к шкалам порядка, также как к номинальным шкалам, действия арифметики не применяют. Исключение составляют оценочные шкалы, при использовании которых объект получает (или сам выставляет) оценки, исходя из определенного числа баллов. К таким шкалам относятся, например, школьные оценки, для которых считается вполне допустимым рассчитывать, например, средний балл по аттестату зрелости. Строго говоря, подобные шкалы являются частным случаем шкалы порядка, так как нельзя определить, на сколько знания "отличника" больше, чем знания "троечника", но в силу некоторых теоретических соображений с ними часто обращаются, как со шкалами более высокого ранга - шкалами интервалов. Другим частным случаем шкалы порядка является ранговая шкала, применяемая обычно в тех случаях, когда признак заведомо не поддается объективному И. (например, красота или степень неприязни), или когда порядок объектов более важен, чем точная величина различий между ними (места, занятые в спортивных соревнованиях). В таких случаях эксперту иногда предлагают проранжировать по определенному критерию некий список объектов, качеств, мотивов и т.п. В силу того, что символы, присваиваемые объектам в соответствии с порядковыми и номинальными шкалами, не обладают числовыми свойствами, даже если записываются с помощью цифр, эти два типа шкал получили общее название качественных, в отличие от количественных шкал интервалов и отношений. Шкалы интервалов и отношений имеют общее свойство, отличающее их от качественных шкал: они предполагают не только определенный порядок между объектами или их классами, но и наличие некоторой единицы И., позволяющей определять, на сколько значение признака у одного объекта больше или меньше, чем у другого. Другими словами, на обеих количественных шкалах, помимо отношений тождества и порядка, определено отношение разности, к ним можно применять арифметические действия сложения и вычитания. Естественно, что символы, приписываемые объектам в соответствии с количественными измерительными шкалами, могут быть только числами. Основное различие между этими двумя шкалами состоит в том, что шкала отношений имеет абсолютный нуль, не зависящий от произвола наблюдателя и соответствующий полному отсутствию измеряемого признака, а на шкале интервалов нуль устанавливается произвольно или в соответствии с некоторыми условными договоренностями. Примерами шкалы интервалов являются календарное время, температурные шкалы Цельсия и Фаренгейта. Шкала оценок с заданным количеством баллов часто рассматривается как интервальная в предположении, что минимальное и максимальное положения на шкале соответствуют некоторым крайним оценкам или позициям , и интервалы между баллами шкалы имеют одинаковую Длина в Энциклопедическом словаре'>длину. К шкалам отношений относится абсолютное большинство измерительных шкал, применяемых в науке, технике и быту: рост и вес, возраст , расстояние, сила тока, время ( длительность промежутка между двумя событиями), температура по Кельвину (абсолютный нуль). Шкала отношений является единственной шкалой, на которой определено отношение отношения , то есть разрешены арифметические действия умножения и деления и, следовательно, возможен ответ на вопрос, во сколько раз одно значение больше или меньше другого. Количественные шкалы делятся на дискретные и непрерывные. Дискретные показатели измеряются в результате счета: число детей в семье, количество решенных задач, и т.п. Непрерывные шкалы предполагают, что измеряемое свойство изменяется непрерывно, и при наличии соответствующих приборов и средств, могло бы быть измерено с любой необходимой степенью точности. Результаты И. непрерывных показателей довольно часто выражаются целыми числами (например, шкала IQ для И. интеллекта ), но это связано не с природой самих показателей, а с характером измерительных процедур. Различают первичные и вторичные И. Первичные получаются в результате непосредственного И.: длина и ширина прямоугольника, число родившихся и умерших за год, ответ на вопрос теста , оценка на экзамене. Вторые являются результатом некоторых манипуляций с первичными И., обычно с помощью неких логико-математических конструкций: площадь прямоугольника, демографические коэффициенты смертности, рождаемости и естественного прироста, результаты тестирования, зачисление или незачисление в институт по результатам вступительных экзаменов. Для проведения И. в естественных и точных науках , в быту применяются специальные измерительные инструменты, которые во многих случаях представляют собой довольно сложные приборы . Качество И. определяется точностью , чувствительностью и надежностью инструмента. Точностью инструмента называется его соответствие существующему в данной области стандарту ( эталону ). Чувствительность инструмента определяется величиной единицы И., например, в зависимости от природы объекта, расстояние может измеряться в микронах, сантиметрах или километрах. Надежностью называется способность инструмента к воспроизведению результатов И. в пределах чувствительности шкалы. В гуманитарных и общественных науках (за исключением экономики и демографии) большинство показателей не поддаются непосредственному И. с помощью традиционных технических средств. Вместо них применяются всевозможные анкеты, тесты, стандартизированные интервью и т.п., получившие общее название измерительного инструментария. Кроме очевидных проблем точности, чувствительности и надежности, для гуманитарного инструментария существует также достаточно острая проблема валидности - способности измерять именно то свойство личности, которое предполагается его автором. О.В. Терещенко

4. Измерение - совокупность действий, выполняемых с целью нахождения числового значения измеряемой величины в принятых единицах измерения; протяженность . В математике линия имеет одно измерение (длину), поверхность - два (длину и ширину), тело - три (длину, ширину и высоту); см. также Континуум . В физике измерение есть отношение физической единицы к осн. единицам длины, массы и времени (см, г, сек), так, напр., единицей измерения скорости является см/сек.

5. Измерение – — познавательная процедура, осуществляемая на эмпирическом уровне научного исследования и включающая определение характеристик (веса, длины, координат, скорости и пр.) материальных объектов с помощью соответствующих измерительных приборов. В конечном счете И. сводится к сравнению измеряемой величины с нек-рой однородной с ней величиной, принятой в качестве эталона (единицы). Посредством той или иной системы единиц И. дается количественное описание свойств тел, составляющее важный элемент познания. И. повышает степень точности нашего знания. Неправильно истолковывая возрастающую роль И. в изучении микроявлений, позитивисты трактуют его как порождение, “приготовление” объекта субъектом (“приборный идеализм ”) или сводят содержание физических понятий к отдельным измерительным операциям ( Опера -ционализм).

Философский словарь
Прослушать

Поделиться с друзьями:

Постоянная ссылка на страницу:

Ссылка для сайта/блога:

Ссылка для форума (BB-код):

«Измерение» в других словарях:

Измерение

- Совокупность действий, выполняемых при помощи средствизмерений с целью нахождения числового значения измеряемой величины впринятых...
Энциклопедический словарь

Измерение

- Протяженность измеряемой величины в каком-нибудь направлении Spec. и еще 1 определение
Словарь Ожегова

Измерение

- - англ. measurement; нем. Messen. Определение  соотношения к.-л. величины с однородной ее величиной, принимаемой за единицу... и еще 4 определения
Социологический словарь

измерение

- ИЗМЕР'ЕНИЕ , измерения, ср. 1. Действие по гл. измерить - измерять . Измерение роста. 2. Измеряемая величина,...
Толковый словарь Ушакова

Связанные понятия: